Play is the term for uncontrolled movement due to looseness of mechanical parts. Play is a contributor to backlash.
Friction is defined as the resistance to motion between surfaces in contact. Elements contributing to friction may be in the form of drag, sliding friction, depleted lubrication, system wear or lubricant viscosity.
Stiction is the static friction that must be overcome to impart motion to a body at rest. Since static friction is generally greater than moving friction, the force which must be applied to impart motion is greater than the force required to keep the body in motion. As a result, when a force is initially applied, the body will begin to move with a “jump” that results in position and/or velocity overshoot. A stage design goal is to achieve static friction as close to the moving friction as possible in an effort to reduce the effect of stiction. One function of motion control electronics is to implement algorithms that reduce the impact of stiction by quickly making necessary corrections to a move profile.
Position Stability is the ability to maintain a position within a specified range over time. Deviation from a stable position may also be called drift. Contributors include worn parts, vibration, migration of lubricant, and thermal variations.
Load Capacity is the maximum allowable force that can be applied to a stage, in a specified direction, while meeting stage specifications. This maximum force includes static (mass * gravity) and dynamic forces (mass * acceleration). Dynamic forces must include any external forces, such as vibrations, acting upon the stage. The amount of acceleration a stage can impart to a mass is limited to the accelerating force it can produce without exceeding a load capacity. For rotary stages, torque (the product of angular acceleration and rotational moment of inertia) is the analog of force. Rotational torques on linear stages can also be a significant factor when cantilevered loads are accelerated. Unless otherwise specified, catalog load capacities refer to a centered normal load (Figure 7).